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Abstract

A technique by which to achieve noise control in a dynamic system, referred to herein as a master
dynamic system, is to couple it to another, an adjunct dynamic system. The resulting induced noise control
is defined in terms of the ratio of the energy stored in the master dynamic system when coupled to the
adjunct dynamic system to the stored energy in the master dynamic system in the absence of this coupling.
An analytical description for the induced noise control is developed. The analysis is then used to define the
dependence of the induced noise control on the parameters that define the two dynamic systems and the
coupling between them. An appropriate induced noise control may then be designed and implemented.
Also, the relationship of this energy analysis to the statistical energy analysis is briefly discussed.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The stored energy in a dynamic system—the master dynamic system—may be altered by
coupling it to another. The dynamic system that is coupled to the master dynamic system is
dubbed the adjunct dynamic system [1–12]. Since the energy stored in a dynamic system is an
eligible measure of its (quadratic average) response, an appropriately designed adjunct dynamic
system may induce a reduction in the response of the master dynamic system. This reduction in
the response is the induced noise control [1–12]. In that vein an induced noise control parameter is
defined in terms of the ratio of the stored energy in a master dynamic system when it is coupled to
an adjunct dynamic system, to that stored energy when the coupling is absent. The induced noise
control parameter so defined comprises of two factors. The first is the ratio of the indigenous loss
factor of the master dynamic system to its virtual loss factor. The virtual loss factor is the sum of
the indigenous loss factor and the induced loss factor in the master dynamic system. The induced
loss factor measures the change in the loss factor in the master dynamic system due to its coupling
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to the adjunct dynamic system. Since the loss factors pertaining to passive dynamic systems are
positive definite, the first factor, is, by definition, less than unity. Thus, this first factor contributes
beneficially to the induced noise control parameter. The second factor is the ratio of the external
input power into the master oscillator when coupled, to the external input power in the absence of
this coupling. This second factor, which is also positive definite, may either exceed unity, be unity,
or be less than unity [14–16]. Both factors, in the induced noise control parameter, are critically
dependent on the global coupling strength and are, therefore, interdependent. The global coupling
strength is itself a ratio. This ratio is that of the energy stored in the adjunct dynamic system and
in the coupling, to the energy stored in the master dynamic system. The investigation of this ratio
and its relationship to the induced loss factor is explained and is graphically illustrated.
The ratio of the modal density in the adjunct dynamic system to that in the master dynamic

system defines, together with the global coupling strength, a modal coupling strength. The
significance of the modal coupling strength is that in the statistical energy analysis (SEA) the value
of the modal coupling strength is, by definition, less than unity [1–4,17–19]. In the energy analysis
(EA), herein developed, the modal coupling strength may exceed unity. This excess occurs in the
energy analysis (EA) when the coupling is strong and the damping assigned to the adjunct dynamic
system is low. The damping in the adjunct dynamic system is conveniently defined in terms of an
associated modal overlap parameter [3,4]. To reconcile the statistical energy analysis (SEA) with
the energy analysis (EA) in focus, the associated modal overlap parameter in the adjunct dynamic
system must necessarily exceed a threshold. This restriction has not been previously recognized by
most (SEA) practitioners.

2. The concept and the analytical definition of the induced noise control parameter

Damping treatment is often employed in order to diminish the response of an externally force-
driven reverberant dynamic system. The statement is linked to the definition of damping in terms
of the loss factor Z0ðoÞ namely

Z0ðoÞ ¼ ½P0
eðoÞ=oE0

0ðoÞ�; P0
eðoÞ ¼ Z0ðoÞ½oE0

0ðoÞ�; ð1Þ

where P0
eðoÞ is the power input from the external force-drive, E0

0 ðoÞ is the stored energy in the
dynamic system and ðoÞ is the frequency variable [1–4]. The stored energy in a dynamic system is
an eligible measure of its (quadratic average) response; see Fig. 1, [20]. From Eq. (1) it follows that
increasing the damping, which entails an increase in the loss factor, will result in a decrease in the
response.
Utilizing Eq. (1), a stored energy reduction scheme may be proposed: the dynamic system in

focus—the master dynamic system—is modified; e.g., by appropriately coupling it to another; see
Fig. 2. The adjunct dynamic system, to which the master dynamic system is to be coupled, is
suitably designed to change the loss factor as perceived by the external force-drive, from Z0ðoÞ to
ZnðoÞ: In the modified dynamic system, as depicted in Fig. 2(b) and in the vein of Eq. (1), one
may define

ZnðoÞ ¼ ½PeðoÞ=oE0ðoÞ�; PeðoÞ ¼ ZnðoÞ½oE0ðoÞ�; ð2Þ
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where the corresponding changes in the stored energy and in the external input power are from
E0
0 ðoÞ to E0ðoÞ and from P0

eðoÞ to PeðoÞ; respectively [1–19]. The external force-drive in this
consideration is assumed to remain unchanged under the modification to the dynamic system as
just proposed. The induced noise control parameter, designated xðoÞ;may then be expressed, from
Eqs. (1) and (2), in the form

xðoÞ ¼ ½E0ðoÞ=E0
0ðoÞ� ¼ x0ðoÞpðoÞ; x0ðoÞ ¼ ½Z0ðoÞ=ZnðoÞ�; ð3Þ
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Fig. 1. An externally force-driven isolated master dynamic system. Subscript (o) designates quantities and parameters

that pertain to the master dynamic system. Superscript (o) designates quantities and parameters that pertain to the

uncoupled master dynamic system. P0
e ¼ input power generated by an external force-drive. E0

0 ¼ stored energy ¼
N0e00; e00 ¼ modal stored energy. N0 ¼ number of modes ¼ DðoÞn0; n0 ¼ modal density. M0 ¼ global mass ¼
N0m0;m0 ¼ modal mass. Z0 ¼ indigenous loss factor; o ¼ frequency variable. DðoÞ ¼ frequency bandwidth centered

about ðoÞ:

Fig. 2. An externally force-driven master dynamic system passively coupled to an adjunct dynamic system. Subscripts

(0) and (s) designate quantities and parameters that pertain to the master dynamic system and to the adjunct dynamic

system, respectively. (a) Both dynamic systems are viewed. Ps ¼ the net power that is imparted to the adjunct dynamic

system from the master dynamic system.

The vector fmc; kc;Gg and its normalized form f %mc; ac; gg describe the coupling coefficients {mass, stiffness and

gyroscopic} between the two dynamic systems (cf. Fig. 1). Pe ¼ input power generated by an external force-drive.

E0 ¼ stored energy in the master dynamic system. Es ¼ stored energy in the adjunct dynamic system. Ns ¼ number of

modes in adjunct dynamic system ¼ DðoÞns; ns ¼ modal density in adjunct dynamic system. Zs ¼ indigenous loss factor

in the adjunct dynamic system. Ms ¼ global mass of the adjunct dynamic system ¼ Nsms; ms ¼ modal mass in the

adjunct dynamic system. (b) Only the master dynamic system is viewed. Zn ¼ virtual loss factor.
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where x0ðoÞ is the ratio of the loss factors of the master dynamic system before to that after
coupling and the external input power ratio pðoÞ is defined as

pðoÞ ¼ ½PeðoÞ=P0
eðoÞ�: ð4Þ

Employing Eqs. (3) and (4) one may speculate that if the external input power is uninfluenced by
the modification, i.e., if

pðoÞ � 1; ð5a:1Þ

and if in addition, the modification successfully achieves a loss factor ZnðoÞ such that it
significantly exceeds the indigenous loss factor Z0ðoÞ; then,

xðoÞ ) x0ðoÞ ¼ ½Z0ðoÞ=ZnðoÞ�{1 ð5bÞ

and consequently the induced noise control is highly beneficial; namely, the noise control
parameter xðoÞ is small compared with unity, xðoÞ{1: The condition stated in Eq. (5a.1) is often
assumed by noise control engineers to be true, and Eq. (5b) is thus assumed valid. However, here
this assumption is challenged; Eq. (5a.1) may not hold. After all, a change in the loss factor,
perceived by an external force-drive in a dynamic system, may, under certain conditions, be
expected to change the external input power. Then, increasing the degree of damping, in the
manner here prescribed and stated in Eq. (5b), may result in an input power ratio pðoÞ which may
either stay as stated in Eq. (5a.1), exceed unity or fall below unity:

pðoÞ > 1; ð5a:2Þ

or

pðoÞo1: ð5a:3Þ

In the absence of heavy handedness in the construction of an adjunct dynamic system, pðoÞ
usually exceeds unity, i.e., Eq. (5a.2) is usually valid. Then the highly beneficial noise control that
Eqs. (5a.1) and (5b) are promising, is mollified as

xðoÞ ¼ x0ðoÞpðoÞ > ½Z0ðoÞ=ZnðoÞ� ¼ x0ðoÞ; ð5cÞ

where use is made of Eq. (3) [14]. The principle that underlines this mollifying influence—the
mitigator of many a noise control panacea—is attributed to Chatelier. Here the manifestation of
Le Chatelier’s Principle reads: An externally driven master dynamic system, in equilibrium, is
coupled to an energy storing (reverberant) adjunct dynamic system with the intention of
increasing the loss factor of the master dynamic system. With the external drive intact, the
external input power into the coupled dynamic systems, in equilibrium, increases, thereby
(partially or even amply) counteracting the benefit accrued from the resulting increase in the loss
factor [15–22].
Focusing attention on Fig. 2, the relationships that are governed by the conservation of energy

are employed to define a number of loss factors and the global and modal coupling strengths. With
the appropriate interpretation of these definitions one may derive an estimation of the external
input power ratio pðoÞ and, hence, provide a more definitive estimate for this quantity than
Eq. (5c) does [14–16]. Then, the induced noise control parameter xðoÞ; stated in Eq. (3), may be
properly estimated. In this paper the estimates are cast predominately in terms of mean values, as
prescribed by Skudrzyk, and computational illustrations of these estimates are cited [20].
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3. Relationships stemming from the conservation of energy

Focusing attention on Fig. 2, one may supplement Eq. (2) with the following definitions derived
off the conservation of energy (power). These definitions may be expressed in the forms

P0ðoÞ ¼ Z0ðoÞ½oE0ðwÞ�; PsðoÞ ¼ ZI ðoÞ½oE0ðoÞ� ¼ ZsðoÞ½oEsðoÞ�;

PeðoÞ ¼ P0ðoÞ þPsðoÞ; PeðoÞ ¼ ZnðoÞ½oE0ðoÞ�; ð6aÞ

and hence

ZnðoÞ ¼ Z0ðoÞ þ ZI ðoÞ; x0ðoÞ ¼ ½1þ fZI ðoÞ=Z0ðoÞg�
�1;

ZI ðoÞ ¼ ZsðoÞI
s
0ðoÞ; Is

0ðoÞ ¼ ½EsðoÞ=E0ðoÞ�; ð6bÞ

where P0ðoÞ is the portion of the external input power dissipated in the master dynamic system,
and PsðoÞ; EsðoÞ and ZsðoÞ are the portion of the external input power dissipated, the energy
stored and the loss factor in the adjunct dynamic system, respectively, and, finally, Is

0ðoÞ is the
ratio of the energy stored in the adjunct dynamic system to that in the master dynamic system
[1–4]. (The coupling elements are considered as part of the adjunct dynamic system, i.e., the stored
energy EsðoÞ includes the stored energy that resides in the coupling elements.) The stored energy
ratio Is

0ðoÞ is dubbed the global coupling strength between the adjunct and the force-driven
master dynamic systems. The loss factor ZI ðoÞ is dubbed the induced loss factor; the loss factor
that is induced in the master dynamic system by virtue of its coupling to the adjunct dynamic
system [5–19,23–25]. In the absence of coupling ZI ðoÞ is identically equal to zero. In addition to
the virtual loss factor ZnðoÞ; defined and stated in Eqs. (2) and (6), an effective loss factor ZeðoÞ of
the combined, masterþ adjunct; dynamic systems may be introduced. This effective loss factor is
defined in the form

PeðoÞ ¼ ZeðoÞ½oEðoÞ�; ZeðoÞ ¼ ½PeðoÞ=oEðoÞ�; EðoÞ ¼ E0ðoÞ þ EsðoÞ;

½PeðoÞ=oE0ðoÞ� ¼ ZnðoÞ ¼ ZeðoÞ½1þ Is
0ðoÞ�; Is

0ðoÞ ¼ ½EsðoÞ=E0ðoÞ� ð7aÞ

and it follows that

½ZnðoÞ=ZeðoÞ� ¼ ½1þ Is
0ðoÞ�X1: ð7bÞ

In Figs. 1 and 2 the modal densities are given as parameters of significance. The significance of
these parameters emerges when it becomes convenient and instructive to define modal quantities
from global counterparts. Of particular interest herein are the definitions of the averaged modal
coupling strength Bs

0ðoÞ and the modal mass ratio ðms=m0Þ: These modal quantities are related to
the corresponding global quantities in the form

Is
0ðoÞ ¼ ½nsðoÞ=n0ðoÞ� Bs

0ðoÞ; ð8aÞ

ðMs=M0Þ ¼ ½nsðoÞ=n0ðoÞ� ðms=m0Þ; ð8bÞ

where n0ðoÞ and nsðoÞ are the modal densities in the master dynamic system and the adjunct
dynamic system, respectively [3,4]. The modal densities also feature prominently when one wishes
to estimate the external input power PeðoÞ into a dynamic system. This estimate yields

PeðoÞ ¼ Sf ðoÞGðoÞ; GðoÞ ¼ ðp=2Þ½nðoÞ=M�; Sf ðoÞ ¼ Dosf ðoÞ; ð9Þ
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where sf ðoÞ is the power spectral density of the external force-drive [3,4]. In Eq. (9), nðoÞ is the
modal density and ðMÞ is the mass of the dynamic system as perceived by the external force-drive
[3,4].1 In Eq. (9), ðDoÞ is a suitable frequency bandwidth centered about the frequency ðoÞ [3,4].
From Fig. 1 and Eq. (9) the external input power, P0

eðoÞ; into the master dynamic system in the
absence of coupling may then be stated in the form

P0
e ðoÞDSf ðoÞðp=2Þ½n0ðoÞ=M0�; ð10aÞ

where n0ðoÞ and ðM0Þ are the modal density and mass of the master dynamic system, respectively
[3,4]. The modal density n0ðoÞ and the mass ðM0Þ; perceived by the external force-drive in the
absence of coupling, may be modified by the presence of the coupling. The modified modal density
and the mass are designated by ns

0ðoÞ and Ms
0ðoÞ; respectively. In this event Eq. (9) assumes the

form

PeðoÞ ¼ Sf ðoÞðp=2Þ½ns
0ðoÞ=Ms

0ðoÞ�: ð10bÞ

It is speculated that the modified modal density ns
0ðoÞ and mass Ms

0ðoÞ are related to the global
and the modal coupling strength, Is

0ðoÞ and Bs
0ðoÞ in the forms

ns
0ðoÞ ¼ ½n0ðoÞ þ Bs

0ðoÞnsðoÞ� ¼ n0ðoÞ½1þ Is
0ðoÞ�; ð11aÞ

Ms
0ðoÞ ¼ M0½1þ FfðMs=M0ÞBs

0ðoÞg� ¼ M0½1þ Ffðms=m0ÞI
s
0ðoÞg� ð11bÞ

where ðm0Þ and ðmsÞ are the modal masses in the master dynamic system and in the adjunct
dynamic system, respectively. Clearly, Eq. (11a) is less problematic than Eq. (11b) [3,4,14]. Indeed,
the functional form of ðFÞ is not readily established unless fðMs=M0ÞBs

0ðoÞg is small, compared
with unity; in this event, FfðMs=M0ÞBs

0g is comparably small, i.e.,

FfðMs=M0ÞBs
0gDfðMs=M0ÞBs

0g{1: ð11cÞ

Eqs. (11a) and (11c) are then compatible. If the power spectral density sf ðoÞ of the external force-
drive remains intact when coupling is instituted, one derives from Eqs. (9)–(11), for the external
input power PeðoÞ into the coupled master dynamic system, the form

PeðoÞDP0
eðoÞ½1þ Is

0ðoÞ�½1þ Ffðms=m0ÞI
s
0ðoÞg�

�1; Sf ðoÞ ¼ Dosf ðoÞ: ð10cÞ

From Eqs. (3)–(11) one obtains finally,

xðoÞ ¼ x0ðoÞpðoÞ; ð12a:1Þ

x0ðoÞ ¼ ½Z0ðoÞ=ZnðoÞ� ¼ ½1þ fZsðoÞ=Z0ðoÞgI
s
0ðoÞ�

�1o1; ð12bÞ
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1Without belaboring the subject matter beyond the scope here considered, it is to be understood that one may

visualize special descriptions, for the external force-drive, the master structure and the coupling to the adjunct structure,

to which Eq. (9) may not apply. Indeed, in a special description of this kind, the ratio pðoÞ of the external input power
may well nigh be equal to unity and Eqs. (5a.1) and (5b) reign supreme. Then much of the subsequent developments and

conclusions utilizing pðoÞa1 become moot; e.g., the induced noise control reversal and the idiosyncrasy between the

energy analysis (EA) and the statistical energy analysis (SEA) vanish. In this paper, however, the validity of Eq. (9) is

not questioned.
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pðoÞ ¼ ½1þ Is
0ðoÞ�½1þ Ffðms=m0ÞI

s
0ðoÞg�

�1: ð12c:1Þ

In the more usual noise control designs, the modal mass ratio ðms=m0Þ is small enough to render
½ðms=m0ÞI

s
0ðoÞ� small compared with unity even when the stored energy ratio Is

0ðoÞ may far
exceed unity. The exceptions are found in the design of a light panel (the master dynamic system)
that is intended to store heavy electronic components (constituting collectively the adjunct
dynamic system) in sections of space crafts [26]. Excluding these exceptions in subsequent
considerations, it is to be assumed that ½ðms=m0ÞI

s
0ðoÞ� is small compared with unity and,

therefore, in subsequent considerations the factor ½1þ Ffðms=m0ÞI
s
0ðoÞg� is approximated as

equal to unity. Under this mass condition, Eqs. (12a.1) and (12c.1) may be explicitly
approximated

xðoÞ ¼ ½1þ fZsðoÞ=Z0ðoÞgI
s
0ðoÞ�

�1½1þ Is
0ðoÞ�; ð12a:2Þ

pðoÞ ¼ ½PeðoÞ=P0
eðoÞ� ¼ ½ZnðoÞ=ZeðoÞ� ¼ ½1þ Is

0ðoÞ� > 1; ð12c:2Þ

respectively, where the effective loss factor ZeðoÞ is defined in Eq. (7). Under this imposition
Eq. (12) already poses a critical question: may an adjunct dynamic system, that is destined to be
passively coupled to an externally force-driven master dynamic system, be appropriately designed
to achieve a credible noise control in that master dynamic system? Three cases are detailed to
exemplify three specific but diverse answers to this question.

Case 1: In this case one assumes a priori that the adjunct dynamic system is merely a sink: a sink
is a dynamic system that absorbs power but does not store energy. Thus, in this case, Is

0ðoÞ ) 0:
From Eq. (12c), therefore, pðoÞ is identically equal to unity:

pðoÞ ¼ 1: ð13aÞ

It follows that when the adjunct dynamic system is a sink and it is attached to the master dynamic
system, the external power injection remains unchanged by this attachment. (One recognizes that
an adjunct dynamic system that is a sink encompasses structures that appear semi-infinite and in
which reverberation cannot be established [9,27,28]. They take power, but they give none of it
back!) On the other hand, the loss factor ðZsÞ that characterizes the adjunct dynamic system,
which is in this case a sink, will yield, from Eqs. (6) and (12), the induced noise control parameter
xðoÞ to be

xðoÞ ) x0ðoÞ ¼ ½Z0ðoÞ�½Z0ðoÞ þ ZI ðoÞ�
�1; ZI ðoÞ ¼ ZsðoÞI

s
0ðoÞ: ð13bÞ

Here the induced loss factor ZI ðoÞ is the loss factor contributed to the master dynamic system by
an adjunct dynamic system that is a priori a sink. In this case ZI ðoÞ is commensurate with the loss
factor Z0ðoÞ that is also assumed a priori to be contributed by an attachment to a sink. From
Eq. (13) one needs to recognize that if ZI ðoÞ is to be finite, ZsðoÞ cannot be selected arbitrarily
small compared with unity.
In the remaining two cases, Case 2 and Case 3, the adjunct dynamic system is not a sink.

Indeed, in both cases it is assumed that the global coupling strength Is
0ðoÞ can be rendered, by

design, to exceed unity: Is
0ðoÞ > 1: (Nonetheless, as tacitly assumed, even though

Is
0ðoÞ > 1; ½ðms=m0ÞI

s
0ðoÞ�{1:)
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Case 2: If in addition to rendering Is
0ðoÞ > 1; the loss factor ZsðoÞ in the adjunct dynamic system

is designed to highly exceed the loss factor Z0ðoÞ that is indigenous to the master dynamic system,
½ZsðoÞ=Z0ðoÞ�c1; then from Eq. (12) one obtains

xðoÞ ¼ ½1þ fZsðoÞ=Z0ðoÞgI
s
0ðoÞ�

�1½1þ Is
0ðoÞ�;

xðoÞo½Z0=ZsðoÞ�½I
s
0ðoÞ�

�1½1þ Is
0ðoÞ�{1; ð14aÞ

which describes a beneficial noise control. It needs to be said in this connection that were the ratio
pðoÞ of the external input power assumed to be equal to unity, as stated in Eq. (5a.1), the apparent
noise control achieved under this (false) assumption, would be even more beneficial than that
estimated in Eq. (14a) i.e.,

xðoÞ ) x0ðoÞD½1þ fZsðoÞ=Z0ðoÞgI
s
0ðoÞ�

�1o ½Z0ðoÞ=ZsðoÞ�½I
s
0ðoÞ�

�1{1: ð14bÞ

Case 3: If the global coupling strength Is
0ðoÞ can be rendered high enough, such that even if, by

design, ½ZsðoÞ=Z0ðoÞ�o1; and ½fZsðoÞ=Z0ðoÞgI
s
0ðoÞ� is still in excess of unity, then

xðoÞD½Z0ðoÞ=ZsðoÞ� > 1; ½Z0ðoÞ=ZsðoÞ� > Is
0ðoÞ > 1: ð15aÞ

Eq. (15a) describes a noise control reversal. Again, were the ratio pðoÞ of the external input power
assumed to be equal to unity, as stated in Eq. (5a.1), the noise control reversal would not emerge;
namely, under this (false) assumption

xðoÞ ) x0ðoÞD½1þ fZsðoÞ=Z0ðoÞgI
s
0ðoÞ�

�1o1; ð15bÞ

which is a beneficial noise control, thus, concealing the estimated noise control reversal quoted in
Eq. (15a) [21,22]. (Again, it is recalled that in this consideration ½ðms=m0ÞI

s
0ðoÞ� is assumed to be

small compared with unity.)
A corollary to cases 2 and 3 follows. Were the adjunct dynamic system loss factor-wise

similar to the master dynamic system, in the sense that Z0ðoÞ ¼ ZsðoÞ; the result would be that
Eqs. (12a)–(12c) would assume the forms

xðoÞ ) 1; ð16aÞ

x0ðoÞ ¼ ½1þ Is
0ðoÞ�

�1 ¼ ½ZeðoÞ=ZnðoÞ�o1; ð16bÞ

pðoÞ ) ½1þ Is
0ðoÞ� ¼ ½ZnðoÞ=ZeðoÞ� > 1; ð16cÞ

respectively. Thus, when Z0ðoÞ ¼ ZsðoÞ; the coupling would produce no noise control benefit; the
coupling is, in this case, neutral.
It emerges in the determination of the induced noise control parameter xðoÞ; that in addition to

the obvious roles played, by the indigenous loss factors Z0ðoÞ and ZsðoÞ (and the modal masses
ðm0Þ and ðmsÞ) in the master and in the adjunct dynamic systems, respectively, there is the crucial
role played by either the induced loss factor ZI ðoÞ or, commensurably, by the global coupling
strength Is

0ðoÞ (cf. Eq. (16)). This is especially so when the adjunct dynamic system is not merely a
sink. (One recalls that in a sink Is

0ðoÞ ) 0 and ZsðoÞI
s
0ðoÞ ) ZI ðoÞ:) The natures and the

compositions of ZI ðoÞ and Is
0ðoÞ for a non-zero Is

0ðoÞ are therefore, investigated next.
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4. Specific evaluations of the induced loss factors and the global and modal coupling strengths

As already stated in Eq. (8), the modal coupling strength Bs
0ðoÞ is related to the global coupling

strength Is
0ðoÞ by the form

Is
0ðoÞ ¼ ½NsðoÞ=N0ðoÞ�Bs

0ðoÞ; Bs
0ðoÞ ¼ ½esðoÞ=e0ðoÞ�; ð17aÞ

E0ðoÞ ¼ Don0ðoÞe0ðoÞ; EsðoÞ ¼ DonsðoÞesðoÞ;

N0ðoÞ ¼ Don0ðoÞ ¼ ðDo=o0Þ½o0n0ðoÞ�; NsðoÞ ¼ DonsðoÞ ¼ ðDo=o0Þ½o0nsðoÞ�; ð17bÞ

where n0ðoÞ and e0ðoÞ and nsðoÞ and esðoÞ are the modal density and the modal stored energy in the
master and in the adjunct dynamic systems, respectively, ðDoÞ is a suitable frequency bandwidth
centered about ðoÞ and ðo0Þ is a suitable normalizing frequency [1–4]. Averaging a la Skudrzyk is
implied in the likes of Eq. (17) and in some subsequent equations [20]. An interpretation that
underlines Skudrzyk averaging is that the modal density nðoÞ is a reasonably smooth function of
frequency. This smoothness is achieved by properly extrapolating and interpolating the discrete
distributions of the modal resonance frequencies. A distribution of this kind is designated ðXrÞ;Xr ¼
ðor=o0Þ; where ðorÞ is the modal resonance frequency of the ðrÞth mode and, again, ðo0Þ is a suitable
normalizing frequency. It is convenient to arrange the mode sequentially indexed, namely

Xr ¼ ðor=o0Þpðorþ1=o0Þ ¼ Xrþ1: ð18aÞ

In the extrapolations and interpolations, the index ðrÞ is given a continuous connotation so that the
smoothness and the sequentiality of the distribution may be defined in the form

X ðrÞ ¼ ½oðrÞ=o0�; X ðr � eÞpX ðr þ eÞe > 0: ð18bÞ

One may then define the corresponding local modal density in the form

½o0nðrÞ� ¼ ½@X ðrÞ=@r��1: ð18cÞ

With this definition in place, mean-value estimates of the induced loss factor ZI ðoÞ; for a typical
mode in the master dynamic system, may be determined [3,4,16,23,24]. The result is

ZI ðoÞDðp=2Þðo=o0Þ
3½o0nsðoÞ�ðms=m0ÞCðoÞ: ð19aÞ

The coupling factor CðoÞ; in Eq. (19a), is expressed in terms of the normalized coupling coefficients
in the form

CðoÞ ¼ ½1þ mcðoÞ��1 C0ðoÞ; C0ðoÞ ¼ ½fmcðoÞ þ acðoÞg
2 þ fgðoÞg2�; ð20aÞ

mcðoÞ ¼ ½mcðoÞ=ms�; acðoÞ ¼ ½kcðoÞ=ðo2msÞ�; gðoÞ ¼ ½GðoÞ=oms�: ð20bÞ

In Figs. 2 and 3 and in Eq. (20), the vector fmcðoÞ; kcðoÞ;GðoÞg defines the mass, the stiffness and
the gyroscopic coupling coefficients, respectively [3,4,29]. One may conveniently categorize the
coupling factor CðoÞ from-strong-to-weak in the form [16,18]

CðoÞDð1=pÞ; strong couplings; ð21aÞ

CðoÞDðp10�2Þ; moderate couplings; ð21bÞ

CðoÞDð10�3Þ; weak couplings: ð21cÞ
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From Eqs. (8) and (17) one may state that

½NsðoÞms=N0ðoÞm0� ¼ ðMs=M0Þ; M0 ¼ N0ðoÞm0; Ms ¼ NsðoÞms ð22Þ

and then, using Eq. (18a), one may recast Eq. (19a) in the form

ZI ðoÞDðp=2Þðo=o0Þ
3½o0n0ðoÞ�ðMs=M0ÞCðoÞ: ð19bÞ

Remarkably, ZI ðoÞ appears to be independent of the loss factor ZsðoÞ in the adjunct dynamic system.
However, this independence is not free of interpretive pitfalls and has led to many erroneous statements.
To straighten out these misuses, it is convenient to express ZsðoÞ in terms of the modal overlap
parameter bsðoÞ [16,23,24]. The (local) modal overlap parameter bsðoÞ is the ratio of a typical (local)
modal bandwidth ½oZsðoÞ� to a typical (local) separation between neighboring modes ½nsðoÞ��1; namely

bsðoÞ ¼ ½oZsðoÞ�nsðoÞ; ZsðoÞ ¼ bsðoÞ½o0nsðoÞ��1ðo0=oÞ; ð23Þ

where the modal density nsðoÞ conforms to its definition in Eq. (18c). The convenience lies in that bsðoÞ
properly determines the degree of damping that ZsðoÞ represents, namely

bsðoÞ

{1; light damping;

D1; moderate damping;

c1; heavy damping:

8><
>:

ð24Þ
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Fig. 3. A sketch of a specific complex dynamic system comprising a master dynamic system consisting of a single

harmonic oscillator (a master oscillator) and an adjunct dynamic system consisting of several harmonic (satellite)

oscillators. The satellite oscillators are identified by the index ðrÞ: The satellite oscillators are uncoupled to each other.

Also, only the master oscillator is externally force-driven.
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It transpires that the derivation of ZI ðoÞ in the form stated in Eq. (19) is predicated on a priori assigning
a continuous connotation to the indices that identify the modes in the adjunct dynamic system. (Here, in
the master dynamic system, a single typical mode is focused upon in the evaluations of the induced loss
factor.) This assignment allows the summations over modes in the adjunct dynamic system to be
replaced by integrations over the continuous indices. This process yields average (a la Skudrzyk) values
for ZI ðoÞ when bsðoÞ is less than unity. (Unlike the integrations, the summations in this instance, i.e.,
when bsðoÞ is less than unity, yield-induced loss factor values that undulate as functions of the
normalized frequency ðo=o0Þ: The excursions of the undulations from the mean values are the more
pronounced the lower the values of bsðoÞ are [16,23].) On the other hand, when bsðoÞ exceeds unity, the
evaluation of the induced loss factors by summations over the individual modes substantially match
those values derived by integrations over the continuous indices [16,23]. In this sense bsðoÞ plays a
pivotal role in the interpretation of the data yielded and stated in Eq. (19) and the erroneous statements
mentioned earlier are, thereby, avoided. Now, Eqs. (6b), (8), (13b), (19) and (24) may be employed to
estimate the modal coupling strengths. These estimates are

Bs
0ðoÞDðp=2Þðo=o0Þ

4½o0nsðoÞ�2ðms=m0Þ½CðoÞ=bsðoÞ�; ð25aÞ

or equivalently,

Bs
0ðoÞDðp=2Þðo=o0Þ

4½o0n0ðoÞo0nsðoÞ�ðMs=M0Þ½CðoÞ=bsðoÞ�: ð25bÞ

It is conducive to exemplify computations of the induced loss factor ZI ðoÞ; stated in Eq. (19), and the
modal coupling strength Bs

0ðoÞ; stated in Eq. (25), by employing the complex sketched in Fig. 3 and
previously investigated in Refs. [16,23].

5. Computations of the induced loss factor gI ðxÞ and the modal coupling strength 1s
0ðxÞ

To facilitate the computations a more definitive statement must be introduced regarding the
complex dynamic system. Thus, from Fig. 3 one surmises that N0ðoÞ is equal to unity and,
therefore, m0 � M0 and the averaging over the modes in the master dynamic system is, thereby,
circumvented (cf. Eq. (17)). In addition, the resonance frequency of the master dynamic system in
isolation is denoted ðo0Þ: The harmonic oscillators pertaining to the adjunct dynamic system are
distinguished, in this case, as satellite oscillators. The number NsðoÞ of satellite oscillators may
exceed unity: NsðoÞX1 (cf. Eq. (17)). In addition, the resonance frequency of the ðrÞth satellite
oscillator is designated ðorÞ: The normalized resonance frequency distribution X ðrÞ of the satellite
oscillators is defined as

ðor=o0Þ ¼ ½oðrÞ=o0� ¼ X ðrÞ; 1prpNs; ð26Þ

and is exhibited in Fig. 4(a). In this figure,

X ðrÞ ¼ ½1þ f1þ Ns � 2rgðg=2NsÞ��1=2; gD0:6; NsðoÞX1; ð27aÞ

and Ns ¼ 27 [23,24]. Both the discrete and continuous forms of X ðrÞ are depicted in Fig. 4(a) [23].
Also, in this example it is imposed that as many satellite oscillators are with resonance frequencies
that are less than the resonance frequency ðo0Þ; as there are those with resonance frequencies
which exceed ðo0Þ [16]. Similarly, the loss factor Zr that is associated with the ðrÞth satellite
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oscillator may be cast in the form

Zr ) ZðrÞ ¼ bðrÞ½X ðrÞ��1½@X ðrÞ=@r� ¼ bðrÞðg=2NsÞ½X ðrÞ�2; ð27bÞ

where bðrÞ is a designated localized modal overlap parameter; localized at and in the vicinity of the
resonance frequency ðorÞ of the ðrÞth satellite oscillator [16,23]. Employing Eq. (27a), with Ns ¼
27 in Eq. (27b), ZðrÞ is exemplified in Fig. 4(b); in this example three constant values of bðrÞ are
used namely, bðrÞ ¼ ð0:1Þ; (2.0) and (10) [23,24]. Again, both the discrete and the continuous forms
of ZðrÞ are depicted in Fig. 4(b) [23].
Using the expression for the normalized resonance frequency distribution X ðrÞ; as stated in

Eq. (27a), one derives from Eq. (18c) the expressions

½o0nsðoÞ� ¼ NsðoÞð2=gÞðo0=oÞ
3; ð28aÞ

ðDo=o0Þ
�1 ¼ ð2=gÞðo=o0Þ

3 ¼ ½o0n0ðoÞ��1; ð28bÞ
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Fig. 4. (a) The normalized resonance frequency distribution X ðrÞ of the harmonic oscillators in the adjunct dynamic

system (the satellite oscillators) as a function of the index ðrÞ: X ðrÞ is as stated in Eq. (29a) and Ns ¼ 27: J; Discrete;
——, continuous. (b) The localized loss factor ZðrÞ of the harmonic oscillator in the adjunct dynamic system (the

satellite oscillators) as a function of the index ðrÞ: ZðrÞ as stated in Eq. (27b), Ns ¼ 27 and J; discrete; ——, continuous

for bðrÞ ¼ 0:1; �; discrete; ——, continuous for bðrÞ ¼ 2:0; &; discrete; ——, continuous for bðrÞ ¼ 10:
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where again N0ðoÞ ¼ 1: From Eqs. (19) and (28) one obtains

ZI ðoÞ ¼ ðp=2Þð2=gÞðMs=M0ÞCðoÞ: ð29Þ

The values for the induced loss factor ZI ðoÞ; as a function of the normalized frequency ðo=o0Þ in
the appropriate range of frequency, are depicted in Fig. 5. The normalized range of frequency is
given by

½DðoÞ=o0�D½1� ðg=2Þ��1=2 � ½1þ ðg=2Þ��1=2Dðg=2Þ: ð30Þ

Again, in Fig. 5, Ns ¼ 27 and the global mass ratio ðMs=M0Þ is set equal to one tenth ð1=10Þ:
There are three curves in Fig. 5, the solid curve corresponds to a strong coupling with CðoÞ ¼ 1;
the dash curve corresponds to a moderate coupling with CðoÞ ¼ 3� 10�2 and the dash–dot curve
corresponds to a weak coupling with CðoÞ ¼ 10�3 (cf. Eq. (21)). The normalized range of
frequency in Fig. 5 is set by g ¼ 0:6: From Eq. (29) it is clear that the induced loss factor increases
with an increase in the global mass ratio ðMs=M0Þ; with an increase in the coupling factor CðoÞ
and with a decrease in the normalized range of frequency, namely, a decrease in ðgÞ;
notwithstanding that ðgÞ must be chosen less than unity. It may be of interest to contrast the
induced loss factor ZI ðoÞ with the corresponding assigned values for the indigenous loss
factor ZsðoÞ in the adjunct dynamic system. The expression for ZsðoÞ is derived from Eqs. (23) and
(28) to be

ZsðoÞ ¼ bsðoÞðo=o0Þ
2½g=2NsðoÞ�: ð31Þ

The loss factor ZsðoÞ is depicted as a function of ðo=o0Þ; for g ¼ 0:6 and NsðoÞ ¼ 27; in Fig. 6. The
three curves in Fig. 6 pertain to bsðoÞ ¼ 0:1 (solid), bsðoÞ ¼ 2:0 (dash) and bs ¼ 10 (dash–dot).
The results in Figs. 5 and 6 may be compared as a bench mark. It is clear, for example, that ZI ðoÞ
definitively exceeds ZsðoÞ and when coupling is strong Is

0ðoÞ exceeds unity (cf. Eq. (6)).
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Fig. 5. The induced loss factor ZI ðoÞ as a function of the normalized frequency ðo=o0Þ for Ns ¼ 27; ðMs=M0Þ ¼ 0:1
and for three values of the coupling factor CðoÞ; CðoÞ ¼ 1:0 (solid curve), CðoÞ ¼ 3� 10�2 (dash curve), and CðoÞ ¼
10�3 (dash–dot curve). The frequency bandwidth ½DðoÞ=o0�Dðg=2Þ ¼ 0:3:
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Using Eqs. (28) and (31) in Eq. (25) one obtains for the modal coupling strength Bs
0ðoÞ the

expressions

Bs
0ðoÞD½p=2bsðoÞ�ðo0=oÞ

2ð2=gÞ2½NsðoÞ�ðms=m0Þ½CðoÞ�; ð32aÞ

Bs
0ðoÞDðp=2Þðo0=oÞ

2ð2=gÞ2ðMs=M0Þ½CðoÞ=bsðoÞ�; N0ðoÞ ¼ 1: ð32bÞ

The values for the modal coupling strength, as a function of the normalized frequency ðo=o0Þ; in
the appropriate range of frequency, as defined in Eq. (30), are depicted in Fig. 7. Again, in Fig. 7
the global mass ratio is set equal to one-tenth ðMs=M0Þ ¼ 0:1; and the normalized range of
frequency is set by g ¼ 0:6: Clearly, as is the induced loss factor ZI ðoÞ; the modal coupling strength
Bs
0ðoÞ increases with increase in the global mass ratio ðMs=M0Þ and the coupling factor CðoÞ: Also,
as does ZI ðoÞ; Bs

0ðoÞ increases as ðgÞ decreases. Significantly, however, the modal coupling
strength Bs

0ðoÞ is inversely proportional to the modal overlap parameter bsðoÞ: The modal
coupling strength Bs

0ðoÞ; as a function of normalized frequency ðo=o0Þ; is depicted in Fig. 7. The
ordinate in Fig. 7 is designed to accommodate three sets of curves. Each set pertains to a
particular coupling factor CðoÞ; in the first set CðoÞ ¼ 1; in the second CðoÞ ¼ 3� 10�2 and in
the third CðoÞ ¼ 10�3: The ordinate for each set spans four decades. For the first set the span is
from 10�2 to 102: For the second set the span is from 3� 10�4 to 3 and for the third from 10�5 to
10�1: With this understanding all three sets are depicted in Fig. 7. In this figure only the span of
the first set is stated explicitly; the spans for the other two sets are merely implicit. In each set of
Fig. 7 three curves are depicted; the solid curve pertains to a bsðoÞ that is equal to one-tenth (0.1),
the dash curve pertains to a bsðoÞ that is equal to two and the dash–dot curve pertains to a bsðoÞ
that is equal to 10. In the light of the statistical energy analysis (SEA), a major observation
emerges from Fig. 7; the observation is discussed briefly in the next section [3,4].
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Fig. 6. The indigenous loss factor ZsðoÞ in the adjunct dynamic system as a function of the normalized frequency

ðo=o0Þ for Ns ¼ 27; ðMs=M0Þ ¼ 0:1 and for three values of the modal overlap parameter bsðoÞ; bsðoÞ ¼ 0:1 (solid),

bsðoÞ ¼ 2:0 (dash) and bsðoÞ ¼ 10:0 (dash–dot). The frequency bandwidth ½DðoÞ=o0�Dðg=2Þ ¼ 0:3:
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6. Validity of SEA

An observation emerges when the modal coupling strength Bsea
0 ðoÞ is estimated via (SEA) rather

than estimated in the manner described herein e.g., as stated in Eq. (32) [16]. In terms of SEA the
net power PsðoÞ that invades the adjunct dynamic system is given by

PsðoÞ ¼ Zs0ðoÞ½oE0ðoÞ� � Z0sðoÞ½oEsðoÞ�;

½Zs0ðoÞ=Z0sðoÞ� ¼ ½NsðoÞ=N0ðoÞ� ¼ ½nsðoÞ=n0ðoÞ�; ð33Þ

where Zs0ðoÞ and Z0sðoÞ are the coupling loss factors from the master dynamic system to the
adjunct dynamic system and vice versa, respectively [3,4]. From Eq. (33) one obtains

½Ps ðoÞ=oE0ðoÞ�sea ¼ Zs0ðoÞ½1� Bsea
0 ðoÞ�;

Bsea
0 ðoÞ ¼ Z0sðoÞ½ZsðoÞ þ Z0sðoÞ�

�1; ð34aÞ

or equivalently

Ps ðoÞ=oE0ðoÞ
� �sea¼ Zsea

I ðoÞ ¼ ZsðoÞZs0ðoÞ½ZsðoÞ þ Z0sðoÞ�
�1 ¼ ZsðoÞI

sea
0 ðoÞ;

Isea
0 ðoÞ ¼ ½NsðoÞ=N0ðoÞ�Bsea

0 ðoÞ; ð34bÞ

where the superscript (sea) indicates that the estimates so superscripted and those enclosed in the
square brackets are a la SEA [3,4]. It is clearly evident from Eq. (34a) that the modal coupling
strength Bsea

0 ðoÞ must, by definition, lie below unity, namely

Bsea
0 ðoÞo1: ð35Þ

Eq. (35) is a tenet of the statistical energy analysis (SEA) [3,4,25].
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Fig. 7. The modal coupling strengths Bs
0ðoÞ; as a function of the normalized frequency ðo=o0Þ; for three values of the

modal overlap parameter bsðoÞ; bs ðoÞ ¼ 0:1 (solid curve), bsðoÞ ¼ 2:0 (dash curve) and bsðoÞ ¼ 10:0 (dash–dot curve).
In these curves Ns ¼ 27 and ðMs=M0Þ ¼ 0:1: The explicit ordinate span of four (4) decades from 10�2 to 102 is for a

coupling factor of CðoÞ ¼ 1: For a coupling factor of CðoÞ ¼ 3� 10�2 and of CðoÞ ¼ 10�3 an ordinate span of four (4)

decades is implicitly understood to extend instead from 3� 10�4 to 3 and from 10�5 to 10�1; respectively. In these

implicit renderings everything else in the graphs remain intact.
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It is observed from Eq. (32) that no such restriction is imposed on Bs
0ðoÞ: Indeed, for the

complex dynamic system depicted in Fig. 3, Fig. 7 exhibits clearly that Bs
0ðoÞ may exceed unity.

For Bs
0ðoÞ; which is determined via the energy analysis (EA), to be compatible with Bsea

0 ðoÞ; which
is determined via the statistical energy analysis (SEA), necessarily requires that Bs

0ðoÞ remains
below unity. From Eq. (34) this requirement may be expressed in terms of a minimal value
½bsðoÞ�M for the modal overlap parameter bsðoÞ; namely

bsðoÞ > ½bsðoÞ�M ¼ ðp=2Þðo0=oÞ
2ð4=g2ÞðMs=M0ÞCðoÞ: ð36Þ

The parameter ½bsðoÞ�M necessarily designates the minimum value of the modal overlap parameter
that is needed to validate the statistical energy analysis [14,16]. Again, for the complex dynamic
system depicted in Fig. 3 and corresponding to Fig. 7, the values of ½bsðoÞ�M ; as a function of
ðo=o0Þ; are exhibited in Fig. 8 for three values of the coupling factor CðoÞ: CðoÞ ¼ 1 (dash–dot),
CðoÞ ¼ 3� 10�2 (dash) and CðoÞ ¼ 10�3 (solid). It is observed, in Fig. 8, that (SEA) is validated
for values of bsðoÞ that are less than unity only for coupling factors that are small compared with
unity. It is, thus, speculated that the use of (SEA) may be strained when dealing with strong and
even with moderate couplings. The validation of (SEA) may be called to question when the loss
factors that are associated with the adjunct dynamic systems assume arbitrarily low values and the
coupling factors assume high values [16–19]. (This idiosyncrasy between (EA) and (SEA) reminds
one of the noise control reversal discussed in Section 3 and is, of course, related to it [26].) In this
connection one is reminded that undulations in the non-averaged values in the response
quantities, of a complex dynamic system are suppressed only when bsðoÞ exceeds unity [16,23].
However, the absence or the presence of undulations in that non-average response do not bear on
the criterion for the validity of (SEA); (SEA) is validated as long as the modal overlap parameter
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Fig. 8. The minimum value of the modal overlap parameter ½bsðoÞ�M ; as a function of the normalized frequency ðo=o0Þ;
for Ns ¼ 27 and ðMs=M0Þ ¼ 0:1 and for three values of the coupling factor CðoÞ; CðoÞ ¼ 1 (dash–dot), CðoÞ ¼
3� 10�2 (dash) and CðoÞ ¼ 10�3 (solid). The statistical energy analysis is necessarily valid for corresponding values of

the modal overlap parameter bsðoÞ that exceed the minimum value shown in this figure.
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bsðoÞ exceeds the corresponding minimum value of this parameter, i.e., as long as bsðoÞ > ½bsðoÞ�M
is valid. Indeed, the employment of (SEA) may be valid for values of both ½bsðoÞ�M and bsðoÞ that
may be less than unity. Eq. (36) makes clear that the validity of (SEA) merely requires that bsðoÞ
exceeds ½bsðoÞ�M : The validity does not demand that undulations be absent in the non-averaged
values of the response quantities. Of course (SEA) yields largely average response quantities,
which are commensurably averaged a la Skudrzyk [3,4,20].
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